Notice
Recent Posts
Recent Comments
Link
일 | 월 | 화 | 수 | 목 | 금 | 토 |
---|---|---|---|---|---|---|
1 | 2 | 3 | 4 | |||
5 | 6 | 7 | 8 | 9 | 10 | 11 |
12 | 13 | 14 | 15 | 16 | 17 | 18 |
19 | 20 | 21 | 22 | 23 | 24 | 25 |
26 | 27 | 28 | 29 | 30 | 31 |
Tags
- 명령어
- sklearn
- 기본
- CROSS JOIN
- Python
- 머신러닝
- SQLD
- 사이킷런
- data preprocessing
- Cartesina Product
- django
- SQL
- 레이블 인코딩
- 원핫인코딩
- Machine Learning
- ML
- partition
- PARTITION BY
Archives
- Today
- Total
목록Machine Learning (1)
Programming Blog
레이블 인코딩(Label Encoding), 원 핫 인코딩(One-Hot Encoding)
기본적으로 사이킷런의 머신러닝 알고리즘은 문자열 값을 입력 값으로 허락하지 않으므로, 모든 문자열 값들을 숫자 형으로 인코딩하는 전처리 작업 후에 머신러닝 모델에 학습을 시켜야합니다. 인코딩 하는 방식에는 레이블 인코딩(Lable encoding)과 원-핫 인코딩(One Hot Encoding)이 있습니다. 레이블 인코딩(Label Encoding) from sklearn.preprocessing import LabelEncoder fruits=['사과', '바나나', '수박'] # LabelEncoder 객체 생성 후 fit()과 transform()으로 LabelEncoder 수행 encoder = LabelEncoder() encoder.fit(fruits) labels = encoder.trans..
머신러닝/데이터 전처리
2020. 11. 11. 14:17